Theoret. chim. Acta (Berl.) 30, 283-314 (1973) © by Springer-Verlag 1973

Commentationes

An ICSCF Investigation of Walsh's Rules

Larilyn Zeller Stenkamp and Ernest R. Davidson

Chemistry Department BG-10, University of Washington, Seattle, Washington 98195 USA

Received March 27, 1973

The ICSCF method is applied to the calculation of orbital energies as a function of bond angle for several AH_2 molecules. The resulting orbital energy diagrams are quite similar in appearance to the canonical SCF results even though the sum of the ICSCF energies is the SCF energy. The method is also applied to Li_2O , CO_2 , HCN and a few AH_3 molecules with similar results. The sum of the ICSCF valence orbital energies generally correlates better with the equilibrium bond angle than does the similar sum of canonical orbital energies.

Key words: Walsh's rules - Orbital energies

Introduction

Rules for predicting the geometry and spectra of triatomic molecules have been formulated by Walsh [1] and Mulliken [2] in the molecular orbital language. Implicit in Walsh's formulation is a set of "binding energies", associated with the orbitals, having the property that changes in total energy are given approximately by changes in the sum of the orbital energies. Thus, in discussing geometry, Walsh assumed that the minimum total energy occurred where the sum of the orbital energies was minimum. Also, in discussing spectra, differences of orbital energies were used to predict the relative positions of excited states.

Within this context Walsh estimated in detail how the energy of each molecular orbital would vary with angle in various triatomic molecules. These estimates have proven to be fairly accurate although certain ones of them were significantly in error. Based on his detailed estimates, Walsh was able to correctly predict the geometry of most triatomic molecules.

Since these original papers, there have appeared innumerable articles attempting to formulate in a rigorous manner these superficially simple results. No attempt will be made to review these articles here since a review paper has recently been written by Buenker and Peyerimhoff [3]. Clearly the orbital energies as used by Walsh have many of the properties associated with orbital energies in the Hückel empirical interpolation schemes. Extended Hückel theory results do generally parallel the predictions of Walsh's rules (even when they are wrong) [4].

Within the Hartree-Fock framework the situation is more difficult. Let

$$h = -\frac{1}{2}\nabla^2 - \sum_{A} Z_{A} r_{A}^{-1}$$
(1)

$$F = h + 2J - K \tag{2}$$

be the one-electron and Fock operators respectively, and let

$$F\psi_i = \varepsilon_i \psi_i \tag{3}$$

and

$$h_{ii} = \langle \psi_i | h | \psi_i \rangle \tag{4}$$

define the canonical Hartree-Fock orbitals ψ_i with orbital energy ε_i and oneelectron energy h_{ii} . Then the energy of a closed-shell molecule is given by

$$E = \sum_{i=1}^{N/2} (\varepsilon_i + h_{ii}) + V_N$$
(5)

where

$$V_N = \sum_{\mathbf{A} < \mathbf{B}} Z_{\mathbf{A}} Z_{\mathbf{B}} R_{\mathbf{A}\mathbf{B}}^{-1} .$$
 (6)

Alternatively,

$$E = \sum_{i} 2\varepsilon_i + V_N - V_e \tag{7}$$

where

$$V_{e} = \sum_{i=1}^{N/2} (\varepsilon_{i} - h_{ii})$$
(8)

is the electron-electron repulsion energy. Coulson and Neilson [5] proposed that the quantity $1/2(\varepsilon_i + h_{ii})$ be associated with the orbital binding energy of Walsh. While this works to some extent for AH₂ molecules where V_N does not change much with angle, it leads to quite erroneous results for AB₂ molecules such as OF₂ [6].

For many molecules the SCF orbital energy, ε_i , seems to work fairly well. Since the charge distribution tends to follow the nuclei, $V_N - V_e$ changes slowly with angle for non-ionic molecules. Peyerimhoff, Buenker and Allen [7] have shown that the sum of the valence orbital ε_i parallels the true energy dependence on angle for some AH₂ and non-ionic AB₂ molecules. Two well-known exceptions are Li₂O in which Walsh's formulation and the sum of the SCF orbital energies both fail to predict the linear geometry [6] and HCN for which the Walsh formulation makes a correct prediction, but the sum of the ε_i does not [3]. Curiously, the fact that the water molecule, H₂O, is also exceptional seems to have been overlooked. For water, the sum of the valence orbital energies decreases with decreasing bond angle so that the sum does predict that H₂O is non-linear, but this sum still has not reached a minimum at a 45° bond angle [8] so it can hardly be regarded as a reliable prediction of geometry.

In a previous paper [9] a generalized form of the self-consistent-field equation was derived. One special case of this generalization is the internally consistent SCF equation. This may be arrived at by noticing that, if the hamiltonian is partitioned into one and two body operators as

$$H = \sum_{i=1}^{N} \left[h(i) + (N-1) \alpha(i) \right] + \sum_{i< j}^{N} \left[g(i,j) - \alpha(i) - \alpha(j) \right],$$
(9)

$$h(i) = \frac{1}{2}\nabla^2 - \sum_{A} Z_A r_{Ai}^{-1},$$
(10)

$$g(i,j) = r_{ij}^{-1},$$
 (11)

284

where α is an arbitrary operator, then the Fock operator for a closed shell becomes

$$F_{\alpha} = F_0 + P \alpha P - Q \alpha Q + \operatorname{Tr} \varrho \alpha \tag{12}$$

where F_0 is the usual Fock operator, P is the projector onto the occupied space, Q is the projector onto the virtual space, and ϱ is the charge density. If one insists that the one body part of H should be chosen to be F_{α} , i.e.

$$F_{\alpha} = h + (N - 1) \alpha , \qquad (13)$$

then a partitioning of H commonly used in perturbation theory,

$$H = \Sigma F_{\alpha}(i) + \Sigma g_{\alpha}(i,j), \qquad (14)$$

would match the partitioning used to obtain F.

This reasoning leads to an operator F_{α} whose matrix elements are easily expressed in terms of the canonical orbitals defined previously (3) as

$$F_{ij} = \langle \psi_i | F | \psi_j \rangle , \qquad (15)$$

$$F_{ij} = (N-2)^{-1} \{ (N-1) \varepsilon_i \delta_{ij} - h_{ij} - V_{ee} \delta_{ij} \} + N^{-1} V_{NN} \delta_{ij} \quad (i, j \le N/2), (16)$$

$$F_{ij} = N^{-1} \{ (N-1) \varepsilon_i \delta_{ij} + h_{ij} - V_{ee} \delta_{ij} \} + N^{-1} V_{NN} \delta_{ij} \quad (i, j > N/2),$$
(17)

$$F_{ij} = F_{ji} = 0 \qquad (i \le N/2, j > N/2),$$
(18)

$$V_{ee} = \sum_{i=1}^{N/2} (\varepsilon_i - h_{ii}),$$
(19)

 V_{NN} = nuclear-nuclear repulsion.

Curiously, the orbital energies from

$$F_{\alpha}v_i = e_i v_i \tag{21}$$

satisfy

$$E_{\rm SCF} = \sum_{i=1}^{N/2} n_i e_i \,. \tag{22}$$

So the sum of the orbital energies is the total energy in contrast to the conventional definitions. Also as was shown in the previous paper, the difference $e_i - e_j$ on the average is close to the excitation energy for transitions between valence orbitals.

Hence these orbital energies e_i would seem to have many of the properties attributed by Walsh to his orbital binding energies. Thus it was of some interest to calculate the e_i and to see whether they would behave in a reasonable manner as bond angles were varied. Reasonable behavior in this sense would mean behavior not too different from the ε_i or from Walsh's plots and not too much angle dependence in the e_i corresponding to 1s core orbitals.

Results

Calculations have been carried out using the polyatomic package of programs written by Langhoff and Elbert. Both the canonical (RHF) and internally consistent (ICSCF) orbitals were obtained. All calculations except that for CO_2

(20)

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1$	- 5.1554	-5.1414	- 5.1349	-5.1244	- 5.1176	- 5.1153	
$2a_1$	-1.3989	-1.3961	- 1.3961	-1.3970	-1.3980	-1.3984	
$3a_1$	-1.0466	-1.0281	-1.0174	-0.9954	-0.9768	-0.9689	
$1b_1$	-0.9763	-0.9746	-0.9733	-0.9709	-0.9694	0.9689	
$1b_2$	-1.2710	-1.3058	- 1.3190	-1.3387	-1.3504	-1.3543	
$\Sigma_{\rm val} \epsilon$	-5.3398	-5.4038	-5.4302	- 5.4714	- 5.4968	- 5.5054	180
E	-15.6508	-15.6866	-15.7001	-15.7201	-15.7320	-15.7359	180
			Car	ionical			
$1a_1$	-4.7654	-4.7569	-4.7533	- 4.7473	-4.7432	-4.7418	
$2a_1$	-0.5129	-0.5041	-0.5022	-0.5002	-0.4994	-0.4992	
$3a_1$	-0.0089	0.0067	0.0151	0.0319	0.0461	0.0526	
$1b_1$	0.0497	0.0507	0.0511	0.0519	0.0524	0.0526	
$1b_2$	-0.3582	-0.3940	-0.4081	-0.4293	-0.4419	-0.4460	
$\Sigma_{\rm val} \varepsilon$	-1.7422	-1.7962	-1.8206	-1.8788	-1.8826	-1.8904	180
$\Sigma_{\rm all} \varepsilon$	-11.2730	-11.3100	-11.3272	-11.3734	-11.3690	-11.3740	180

Table 1. The $1a_1^2 2a_1^2 1b_2^2 {}^1A_1$ state of BeH₂

Table 2. The $1a_1^2 2a_1^2 1b_2^1 3a_1^{1} ^3B_2$ state of BeH₂

	90	110	120	140	160	180	α_e
			IC	CSCF			
$1a_1$	- 5.0953	- 5.0912	-5.0902	- 5.0907	- 5.0939	- 5.0968	
$2a_1$	- 1.4080	- 1.3942	-1.3889	-1.3802	-1.3737	-1.3709	
$3a_1$	-1.1999	-1.1808	-1.1701	- 1.1473	-1.1246	- 1.1119	
$1b_1$	-0.9443	-0.9445	-0.9444	-0.9442	-0.9442	-0.9442	
$1b_2$	- 1.3734	-1.4102	-1.4226	- 1.4395	-1.4487	- 1.4518	
$\Sigma_{\rm val} \varepsilon$	- 5.3893	- 5.3794	-5.3705	- 5.3472	-5.3207	-5.3055	< 90
E	- 15.5799	-15.5618	-15.5511	-15.5288	-15.5085	-15.4990	< 90
			Car	nonical			
$1a_1$	- 4.7572	-4.7571	-4.7581	- 4.7617	-4.7676	-4.7720	
$2a_1$	-0.5608	-0.5435	-0.5372	-0.5279	-0.5229	-0.5219	
$3a_1$	-0.2820	-0.2664	-0.2575	-0.2375	-0.2164	-0.2040	
$1b_1$	0.0486	0.0480	0.0476	0.0465	0.0450	0.0440	
$1b_2$	-0.4835	-0.5193	-0.5324	-0.5519	-0.5648	-0.5704	
$\Sigma_{val} \varepsilon$	-1.8871	- 1.8727	-1.8643	-1.8452	-1.8270	-1.8182	< 90
$\Sigma_{\rm all} \varepsilon$	-11.4015	-11.3869	-11.3805	-11.3686	-11.3622	-11.3622	< 90

used contracted Gaussian lobe functions published by Whitten [10]. The calculation for CO_2 used a basis set based on Huzinaga's primitive Gaussians with the contraction optimized by Elbert. In order to lower the cost of this exploratory calculation, the same basis set and the same bond length was used for positive and negative ions and for all states of the neutral molecule. The scale factors for the hydrogen basis functions were taken from the work of Peyerimhoff *et al.* [7].

			1 1	2 1 2	2		
	90	110	120	140	160	180	α _e
			IC	NCE.			
			R	JOCI			
$1a_1$	-5.1248	-5.1132	-5.1082	-5.1003	- 5.0953	- 5.0937	
$2a_1$	-1.3868	-1.3781	- 1.3756	-1.3725	-1.3711	-1.3707	
$3a_1$	-1.0114	-0.9960	-0.9870	-0.9682	-0.9513	-0.9438	
$1b_1$	-1.1281	- 1.1245	-1.1227	- 1.1197	-1.1180	-1.1175	
$1b_2$	-1.3625	-1.4044	- 1.4196	-1.4416	-1.4541	-1.4582	
$\Sigma_{\rm wal} \varepsilon$	- 5.2642	- 5.2851	- 5.2935	- 5.3063	- 5.3143	- 5.3171	180
E	-15.5138	-15.5115	-15.5098	-15.5069	-15.5051	-15.5046	< 90
			0				
			Car	ionical			
$1a_1$	-4.7850	-4.7786	-4.7760	-4.7720	- 4.7693	-4.7684	
$2a_1$	-0.5482	- 0.5346	-0.5303	-0.5246	-0.5216	-0.5206	
$3a_1$	-0.0093	0.0035	0.0106	0.0254	0.0386	0.0448	
$1b_1$	-0.2104	-0.2101	-0.2100	-0.2099	-0.2097	-0.2096	
$1b_2$	-0.4799	-0.5197	-0.5348	-0.5571	-0.5703	-0.5746	
$\Sigma_{val} \varepsilon$	-1.7867	- 1.7990	-1.8054	-1.8162	-1.8232	-1.8254	180
Σ_{all}	-11.3567	-11.3562	-11.3574	-11.3602	-11.3618	-11.3622	180

Table 3. The $1a_1^2 2a_1^2 1b_2^1 1b_1^1 {}^{3}A_2$ state of BeH₂

Table 4. The $1a_1^2 2a_1^2 1b_2^2 A_1$ state of BH₂⁺

	90	110	120	140	160	180	α _e
			IC	CSCF			
$1a_1$	- 8.5547	-8.5482	- 8.5444	- 8.5373	- 8.5327	- 8.5311	
$2a_1$	-2.1651	-2.1545	-2.1512	- 2.1472	-2.1450	- 2.1443	
$3a_1$	-1.7140	- 1.6940	-1.6826	- 1.6596	- 1.6416	- 1.6346	
$1b_1$	- 1.6393	- 1.6393	-1.6385	-1.6366	-1.6352	- 1.6346	
$1b_2$	-1.9424	-1.9850	-2.0016	-2.0271	-2.0423	- 2.0475	
$\Sigma_{\rm val} \varepsilon$	-8.2150	-8.2790	- 8.3056	- 8.3486	-8.3746	- 8.3836	180
E	-25.3244	-25.3753	-25.3945	-25.4232	-25.4401	-25.4457	180
			Car	nonical			
$1a_1$	- 8.0901	-8.0881	-8.0868	-8.0847	-8.0833	-8.0829	
$2a_1$	-1.0299	-1.0151	-1.0103	-1.0043	-1.0009	- 0.9999	
$3a_1$	-0.3324	-0.3101	-0.2978	-0.2736	-0.2542	-0.2466	
$1b_1$	-0.2465	-0.2468	-0.2467	-0.2466	-0.2466	-0.2466	
$1b_2$	-0.7904	-0.8334	-0.8511	-0.8792	-0.8962	-0.9021	
$\tilde{\Sigma_{val}}\varepsilon$	- 3.6406	- 3.6970	-3.7228	-3.7670	- 3.7942	-3.8040	180
$\Sigma_{\rm all}\varepsilon$	-19.8208	-19.8732	-19.8964	- 19.9364	-19.9608	- 19.9698	180

The bond length was held constant at its experimental equilibrium value as the bond angle was varied. This procedure is admittedly crude, but it should be sufficiently accurate to illustrate the behavior of the ICSCF method.

For all of the AH_2 systems studied [see Tables 1–25 and Figs. 1–23] the predicted geometry from E_{SCF} is in agreement with Walsh's rules. The six electron

	90	110	120	140	160	180	α
			IC	CSCF			
$1a_1$	- 8.3138	- 8.3113	-8.3100	-8.3080	- 8.3079	- 8.3083	
$2a_1$	-1.9573	-1.9440	- 1.9394	- 1.9329	- 1.9287	-1.9273	
$3a_1$	- 1.6914	- 1.6667	- 1.6519	- 1.6202	- 1.5914	- 1.5781	
$1b_1$	-1.4498	-1.4517	- 1.4519	-1.4519	-1.4518	-1.4517	
$1b_2$	- 1.7249	- 1.7664	-1.7826	-1.8080	-1.8241	-1.8300	
$\Sigma_{val} \varepsilon$	- 9.0558	- 9.0875	- 9.0959	-9.1020	- 9.0970	- 9.0927	141
E	-25.6834	-25.7099	-25.7159	-25.7180	- 25.7129	-25.7094	136
			Car	onical			
1 <i>a</i> ,	-7.6310	-7.6274	7.6266	-7.6265	-7.6286	- 7.6302	
$2a_1$	-0.7005	-0.6796	-0.6725	-0.6630	-0.6585	-0.6577	
$3a_1$	-0.3935	-0.3677	-0.3536	-0.3234	-0.2968	-0.2840	
$1b_1$	0.0597	0.0605	0.0606	0.0602	0.0591	0.0584	
$1b_2$	-0.4409	-0.4809	-0.4975	-0.5249	-0.5433	0.5506	
$\Sigma_{nal} \varepsilon$	-2.6763	-2.6887	- 2.6936	-2.6992	-2.7004	-2.7006	180
$\Sigma_{\rm all}\varepsilon$	-17.9383	-17.9435	-17.9468	-17.9522	- 17.9576	-17.9610	180

Table 5. The $1a_1^2 2a_1^2 1b_2^2 3a_1^{1/2}A_1$ state of BH₂

Table 6. The $1a_1^2 2a_1^2 1b_2^2 1b_1^{1\ 2}B_1$ state of BH₂

	90	110	120	140	160	180	α _e
			IC	CSCF			
$1a_1$	-8.3307	-8.3234	- 8.3198	- 8.3135	- 8.3097	-8.3083	
$2a_1$	- 1.9448	- 1.9356	- 1.9329	-1.9297	- 1.9279	-1.9273	
$3a_1$	- 1.5365	-1.5154	-1.5033	-1.4789	- 1.4594	- 1.4517	
$1b_1$	-1.5870	-1.5856	-1.5842	-1.5812	- 1.5789	-1.5781	
$1b_2$	-1.7260	-1.7682	-1.7846	-1.8098	-1.8249	-1.8300	
$\Sigma_{\rm val} \varepsilon$	8.9286	- 8.9932	9.0192	-9.0602	- 9.0845	9.0927	180
E	- 25.5901	-25.6401	-25.6590	-25.6872	-25.7038	-25.7094	180
•			Car	nonical			
$1a_1$	- 7.6442	- 7.6380	- 7.6357	- 7.6323	- 7.6307	-7.6302	
$2a_1$	-0.6887	-0.6728	0.6679	-0.6618	-0.6586	-0.6577	
$3a_1$	-0.0185	0.0031	0.0143	0.0358	0.0521	0.0584	
$1b_1$	-0.2891	-0.2867	-0.2859	-0.2847	-0.2842	-0.2840	
1b,	-0.4426	-0.4843	-0.5014	-0.5284	- 0.5449	-0.5506	
$\Sigma_{\rm val} \varepsilon$	-2.5517	-2.6009	- 2.6245	-2.6651	-2.6912	-2.7006	180
$\Sigma_{all} \varepsilon$	- 17.8401	-17.8769	- 17.8959	-17.9297	-17.9526	- 17.9610	180

systems are found to be linear while the 7–10 electron systems are found to be bent. The calculated bond angles for bent molecules are within 10° of the known experimental angles which indicates that the RHF method with these basis sets is capable of quantitative as well as qualitative predictions.

	90	110	120	140	160	180	α _e
			I	CSCF			
$1a_12a_13a_11b_11b_2\Sigma_{val}\varepsilonE$	$\begin{array}{rrrr} - & 8.1501 \\ - & 1.7687 \\ - & 1.3728 \\ - & 1.2699 \\ - & 1.5270 \\ - & 9.3370 \\ - & 25.6373 \end{array}$	$\begin{array}{rrrrr} - & 8.1517 \\ - & 1.7501 \\ - & 1.3606 \\ - & 1.2710 \\ - & 1.5625 \\ - & 9.3464 \\ - & 25.6498 \end{array}$	- 8.1529 - 1.7423 - 1.3537 - 1.2710 - 1.5758 - 9.3436 - 25.6494	- 8.1556 - 1.7281 - 1.3416 - 1.2704 - 1.5955 - 9.3304 - 25.6415	$\begin{array}{rrrr} - & 8.1587 \\ - & 1.7163 \\ - & 1.3341 \\ - & 1.2698 \\ - & 1.6071 \\ - & 9.3150 \\ - & 25.6322 \end{array}$	- 8.1599 - 1.7114 - 1.3318 - 1.2695 - 1.6111 - 9.3086 -25.6282	109 111
			Ca	nonical			
$1a_1$ $2a_1$ $3a_1$ $1b_1$ $1b_2$ $\sum_{val} \varepsilon$ $\sum_{all} \varepsilon$	$\begin{array}{rrrr} -& 7.3259\\ -& 0.4490\\ && 0.0061\\ && 0.2985\\ -& 0.1742\\ -& 1.2342\\ -& 15.8860\end{array}$	- 7.3272 - 0.4256 0.0232 0.2990 - 0.2138 - 1.2324 - 15.8868	$\begin{array}{rrrr} -& 7.3294 \\ -& 0.4170 \\ && 0.0310 \\ && 0.2987 \\ -& 0.2301 \\ -& 1.2322 \\ -& 15.8910 \end{array}$	 7.3354 0.4035 0.0436 0.2976 0.2567 1.2332 15.9040 	$\begin{array}{rrrr} -& 7.3415\\ -& 0.3937\\ & 0.0506\\ & 0.2962\\ -& 0.2737\\ -& 1.2336\\ -& 15.9166\end{array}$	- 7.3441 - 0.3899 0.0526 0.2956 - 0.2798 - 1.2342 - 15.9224	< 90, 180 180

Table 7. The $1a_1^2 2a_1^2 1b_2^2 3a_1^{2} A_1^2$ state of BH₂

Table 8. The $1a_1^2 2a_1^2 1b_2^2 1b_1 3a_1^{-3}B_1$ state of BH₂

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1$	-8.1434	- 8.1418	-8.1414	-8.1414	-8.1431	-8.1442	
$2a_1$	-1.7395	- 1.7259	-1.7212	-1.7143	- 1.7095	-1.7077	
$3a_1$	-1.4709	-1.4489	-1.4359	- 1.4089	-1.3860	-1.3764	
$1b_1$	-1.3824	-1.3834	-1.3828	-1.3805	-1.3778	-1.3764	
$1b_2$	-1.5122	-1.5504	-1.5653	-1.5884	-1.6027	-1.6077	
$\Sigma_{\rm val} \epsilon$	-9.3567	- 9.3849	-9.3917	- 9.3948	-9.3882	-9.3836	136
Ε	-25.6433	-25.6686	-25.6745	-25.6775	-25.2743	- 25.6720	140
			Car	ionical			
$1a_1$	-7.3210	- 7.3176	-7.3176	-7.3200	-7.3249	- 7.3276	
$2a_1$	-0.4232	-0.4019	-0.3951	-0.3868	-0.3834	-0.3829	
3a ₁	-0.0995	-0.0716	-0.0567	-0.0265	-0.0006	0.0106	
$1b_1$	0.0145	0.0165	0.0165	0.0151	0.0122	0.0106	
$1b_2$	-0.1620	-0.2018	-0.2184	-0.2462	-0.2653	-0.2727	
$\Sigma_{val} \varepsilon$	-1.2554	-1.2625	-1.2672	-1.2774	-1.2858	-1.2900	180
$\Sigma_{\rm all}\varepsilon$	-15.8974	-15.8977	-15.9024	-15.9174	-15.9356	-15.9452	180

The canonical orbital energy versus bond angle diagrams are quite similar to those reported and discussed at length by Peyerimhoff *et al.* [7]. Except for NH_2 , CH_2^- , and H_2O^+ the canonical orbital energies are in the order predicted by Walsh. This exception for NH_2 has been previously noted by Krauss [11]. The $2a_1$ orbital energy is seen to increase, not decrease as Walsh predicted, with

	90	110	120	140	160	180	α _e
			IC	CSCF			
$1a_1$	-8.1810	-8.1736	-8.1702	- 8.1645	- 8.1611	- 8.1599	
$2a_1$	-1.7288	- 1.7196	- 1.7169	-1.7137	-1.7120	-1.7114	
$3a_1$	-1.3529	- 1.3319	- 1.3199	-1.2960	-1.2770	-1.2695	
$1b_1$		-1.3362	-1.3355	-1.3338	-1.3323	-1.3318	
$1b_2$	-1.5109	-1.5512	- 1.5671	- 1.5914	-1.6061	-1.6111	
$\Sigma_{val} \varepsilon$	-9.1510	-9.2140	-9.2390	-9.2778	- 9.3008	9.3086	180
Ε	-25.5129	-25.5612	-25.5794	-25.6066	-25.6228	-25.6283	180
			Car	onical			
$1a_1$	- 7.3623	- 7.3540	-7.3511	- 7.3469	7.3448	- 7.3441	
$2a_1$	-0.4239	-0.4066	-0.4012	-0.3945	-0.3909	-0.3899	
$3a_1$	0.2237	0.2444	0.2550	0.2749	0.2898	0.2956	
$1b_{1}$	0.0458	0.0489	0.0500	0.0516	0.0524	0.0526	
$1b_2$	-0.1751	-0.2157	-0.2323	-0.2584	-0.2744	-0.2798	
$\Sigma_{\rm val} \varepsilon$	- 1.1064	-1.1468	-1.1670	-1.2026	-1.2258	-1.2342	180
$\Sigma_{a11}\varepsilon$	-15.8310	-15.8548	-15.8692	-15.8964	-15.9154	-15.9224	180

Table 9. The $1a_1^2 2a_1^2 1b_2^2 1b_1^2 {}^1A_1$ state of BH₂

Table 10. The $1a_1^2 2a_1^2 1b_2^2 3a_1^2 A_1$ state of CH₂⁺

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1$	-12.6067	- 12.6054	- 12.6036	- 12.5990	- 12.5948	-12.5928	
$2a_1$	- 2.8631	- 2.8494	- 2.8451	- 2.8400	- 2.8382	- 2.8382	
$3a_1$	- 2.5128	- 2.4822	- 2.4648	- 2.4288	- 2.3971	- 2.3829	
$1b_1$	- 2.2478	- 2.2515	- 2.2527	- 2.2545	- 2.2560	- 2.2566	
$1b_2$	- 2.5163	- 2.5651	- 2.5849	- 2.6168	- 2.6380	- 2.6461	
$\Sigma_{\rm val} \varepsilon$	-13.2716	-13.3112	-13.3248	-13.3424	- 13.3495	-13.3515	180
Ε	-38.4852	- 38.5219	- 38.5320	- 38.5403	- 38.5391	-38.5372	147
			Cano	onical			
$1a_1$	-11.7566	-11.7515	-11.7482	- 11.7406	-11.7329	-11.7293	
$2a_1$	- 1.2843	- 1.2631	- 1.2549	- 1.2423	- 1.2341	- 1.2314	
$3a_1$	- 0.9302	- 0.9009	- 0.8847	- 0.8515	- 0.8223	- 0.8093	
$1b_1$	- 0.3030	- 0.3018	- 0.3009	- 0.2990	- 0.2971	- 0.2962	
$1b_2$	- 0.9196	- 0.9606	- 0.9775	- 1.0040	- 1.0199	- 1.0255	
$\Sigma_{\rm val} \varepsilon$	- 5.3380	- 5.3483	- 5.3495	- 5.3441	- 5.3303	- 5.3231	114
$\Sigma_{\rm all} \varepsilon$	-28.8512	-28.8513	- 28.8459	-28.8253	- 28.7961	-28.7817	101

increase in bond angle, but this result has also been noted and explained previously [7]. For the most part, the change of the $3a_1$ orbital energy with bond angle is less than Walsh predicted, and the change of the $1b_1$ energy is somewhat greater than he expected (see Refs. [3, 7] for a detailed discussion). Figs. 19, 21 for the ${}^{2}A_{1}$ states of H₂O⁺ and NH₂ even show the crossing of the $3a_1$ and $1b_2$ energies

			1 1	2 1 1	2		
	90	110	120	140	160	180	α
			IC	SCF			
$1a_1$	-12.6060	-12.6031	-12.6010	-12.5968	- 12.5939	- 12.5928	
$2a_1$	- 2.8592	- 2.8487	- 2.8454	- 2.8412	- 2.8389	- 2.8382	
$3a_i$	- 2.3479	- 2.3225	- 2.3091	- 2.2833	- 2.2640	- 2.2566	
$1b_1$	- 2.3876	- 2.3874	- 2.3866	- 2.3848	- 2.3834	- 2.3829	
$1b_2$	- 2.5295	- 2.5764	- 2.5949	- 2.6283	- 2.6403	- 2.6461	
$\Sigma_{val} \varepsilon$	-13.1650	-13.2376	-13.2672	-13.3138	-13.3418	-13.3515	180
E	- 38.3770	- 38.4438	- 38.4693	-38.5074	- 38.5297	- 38.5372	180
			Can	onical			
$1a_1$	-11.7375	-11.7354	-11.7341	-11.7317	-11.7299	-11.7293	
$2a_1$	- 1.2622	- 1.2481	- 1.2432	- 1.2365	- 1.2326	- 1.2314	
$3a_1$	- 0.4026	- 0.3728	- 0.3574	- 0.3280	- 0.3051	- 0.2962	
$1b_1$	- 0.8110	- 0.8110	- 0.8107	- 0.8100	- 0.8094	- 0.8093	
$1b_2$	- 0.9113	- 0.9551	- 0.9733	- 1.0020	- 1.0194	- 1.0255	
$\Sigma_{val} \epsilon$	- 5.1580	- 5.2174	- 5.2437	- 5.2870	- 5.3134	- 5.3231	180
$\Sigma_{all} \varepsilon$	-28.6330	-28.6882	-28.7119	-28.7504	-28.7732	-28.7817	180

Table 11. The $1a_1^2 2a_1^2 1b_2^2 1b_1^2 B_1$ state of CH⁺₂

Table 12. The $1a_1^2 2a_1^2 1b_2^2 3a_1^{2\,1}A_1$ state of CH₂

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1$	-12.3671	-12.3560	-12.3647	-12.3614	-12.3587	-12.3574	
$2a_1$	- 2.6426	- 2.6244	- 2.6171	- 2.6039	- 2.5930	- 2.5885	
3a ₁	- 2.1145	- 2.0954	- 2.0857	- 2.0689	- 2.0590	- 2.0560	
$1b_1$	- 2.0204	- 2.0231	- 2.0240	- 2.0252	- 2.0260	- 2.0262	
$1b_2$	- 2.2853	- 2.3311	- 2.3490	- 2.3768	- 2.3938	- 2.3996	
$\Sigma_{\rm val}\varepsilon$	-14.0848	-14.1018	-14.1036	-14.0992	-14.0916	-14.0882	116
E	-38.8190	-38.8336	-38.8328	-38.8221	- 38.8089	- 38.8033	114
			Cano	onical			
$1a_1$	-11.2884	-11.2834	-11.2805		-11.2695	-11.2674	
$2a_1$	- 0.9273	- 0.9027	- 0.8923	- 0.8737	- 0.8589	- 0.8531	
$3a_1$	- 0.3854	- 0.3616	- 0.3501	- 0.3303	- 0.3179	- 0.3141	
$1b_1$	0.0519	0.0535	0.0544	0.0559	0.0570	0.0575	
16,	- 0.5370	- 0.5778	- 0.5941	- 0.6192	- 0.6340	- 0.6391	
Σ_{m1}	- 3.6994	- 3.6842	- 3.6730	- 3.6464	- 3.6216	- 3.6126	< 90
$\Sigma_{all} \varepsilon$	-26.2762	-26.2510	-26.2340	-26.1952	- 26.1606	- 26.1474	< 90

as predicted by Walsh. Because the RHF self-consistent-field procedure treats virtual orbitals in an unsatisfactory manner, the energy assigned to an orbital changes drastically depending on whether it is occupied or empty. Thus, in contrast to Hückel theory and Walsh's reasoning, the canonical orbital energy plots change appearance not only between molecules but also from state to state of the same molecule.

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1 \\ 2a_1$	- 12.3409 - 2.6113	- 12.3391 - 2.5980	- 12.3377 - 2.5936	-12.3346 -2.5877	- 12.3325 - 2.5844	-12.3316 -2.5836	
$3a_1$ $1b_1$	-2.2507 -2.1183	-2.2203 -2.1207	-2.2032 -2.1213	-2.1680 -2.1221	-2.1371 -2.1229	-2.1233 -2.1233 -2.1233	
${\Sigma_{\rm val} \varepsilon \over E}$	-2.2738 -14.1432 -38.8250	-2.3224 -14.1818 -38.8600	-14.1937 -38.8692	-14.2063 -38.8755	- 2.3894 - 14.2076 - 38.8726	-2.3904 -14.2066 -38.8698	161 143
			Can	onical			
$1a_1 \\ 2a_1 \\ 3a_1 \\ 1b_1 \\ 1b_2 \\ \Sigma_{val} \varepsilon \\ \Sigma_{all} \varepsilon$	$\begin{array}{r} -11.2562 \\ -0.8874 \\ -0.5085 \\ -0.3842 \\ -0.5170 \\ -3.7015 \\ -26.2139 \end{array}$	$\begin{array}{r} -11.2510\\ -0.8675\\ -0.4752\\ -0.3818\\ -0.5591\\ -3.7102\\ -26.2122\end{array}$	$\begin{array}{r} -11.2487\\ -0.8603\\ -0.4576\\ -0.3807\\ -0.5765\\ -3.7119\\ -26.2093\end{array}$	-11.2443 - 0.8500 - 0.4221 - 0.3789 - 0.6043 - 3.7096 -26.1982	$\begin{array}{r} -11.2411\\ -0.8440\\ -0.3911\\ -0.3776\\ -0.6219\\ -3.7005\\ -26.1827\end{array}$	$\begin{array}{r} -11.2397\\ -\ 0.8424\\ -\ 0.3771\\ -\ 0.3771\\ -\ 0.6284\\ -\ 3.6958\\ -26.1752\end{array}$	123 < 90

Table 13. The $1a_1^2 2a_1^2 1b_2^2 3a_1^{-3}B_1$ state of CH₂

Table 14. The $1a_1^2 2a_1^2 1b_2^2 1b_1^2 {}^1A_1$ state of CH₂

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1 2a_1 3a_1 1b_1 1b_2 \sum_{val} \varepsilon \\ E$	12.3728 2.6073 2.1252 2.0580 2.2849 13.9004 38.6459	- 12.3688 - 2.5977 - 2.0980 - 2.0588 - 2.3312 - 13.9754 - 38.7119	- 12.3659 - 2.5948 - 2.0836 - 2.0584 - 2.3494 - 14.0052 - 38.7369	- 12.3614 - 2.5911 - 2.0558 - 2.0573 - 2.3773 - 14.0514 - 38.7742	- 12.3585 - 2.5891 - 2.0345 - 2.0564 - 2.3940 - 14.0790 - 38.7960	- 12.3574 - 2.5885 - 2.0262 - 2.0560 - 2.3996 - 14.0882 - 38.8033	180 180
			Cano	onical			
$1a_1$ $2a_1$ $3a_1$ $1b_1$ $1b_2$ $\Sigma_{val}\varepsilon$ $\Sigma_{all}\varepsilon$	$\begin{array}{r} -11.2824\\ -0.8849\\ -0.0459\\ -0.3195\\ -0.5270\\ -3.4628\\ -26.0276\end{array}$	$\begin{array}{r} -11.2766 \\ -0.8698 \\ -0.0161 \\ -0.3175 \\ -0.5702 \\ -3.5150 \\ -26.0682 \end{array}$	- 11.2742 - 0.8648 - 0.0011 - 0.3166 - 0.5880 - 3.5388 - 26.0872	$\begin{array}{r} -11.2704 \\ -0.8580 \\ 0.0273 \\ -0.3152 \\ -0.6161 \\ -3.5786 \\ -26.1194 \end{array}$	$\begin{array}{r} -11.2682\\ -\ 0.8542\\ 0.0491\\ -\ 0.3143\\ -\ 0.6331\\ -\ 3.6032\\ -26.1396\end{array}$	$\begin{array}{r} -11.2674 \\ -0.8531 \\ 0.0575 \\ -0.3141 \\ -0.6391 \\ -3.6126 \\ -26.1474 \end{array}$	180 180

For the 2, 4, and 6 valence electron molecules (lowest singlet state), BeH₂, BH₂⁺, BH₂⁻, it was claimed [7] that the sum of the valence orbital ε_i correlated correctly with the geometry. The present results agree with the claim except that the orbital energy sum seems to predict too small a bond angle. Also as in that study [7], this correlation of geometry and the sum of the ε_i was not found to hold for the 6 electron system ${}^{1}A_1$ NH₂⁺. Examination of the 25 AH₂ results

	90	110	120	140	160	180	α _e
			ICS	SCF			
$1a_1 \\ 2a_1 \\ 3a_1 \\ 1b_1$	- 12.1394 - 2.3931 - 1.8800 - 1.8801	- 12.1404 - 2.3746 - 1.8615 - 1.8817	-12.1406 -2.3671 -1.8518 -1.8819	-12.1411 -2.3536 -1.8345 -1.8820	12.1418 2.3424 1.8237 1.8818	-12.1419 -2.3377 -1.8203 -1.8817	
$1b_2$ $\Sigma_{val}\varepsilon$ E	- 2.0500 -14.5263 - 38.8051	- 2.0915 - 14.5369 - 38.8177	- 2.1075 -14.5347 -38.8161	$- 2.1318 \\ - 14.5218 \\ - 38.8041$	— 2.1464 — 14.5068 — 38.7901	- 2.1513 - 14.5003 - 38.7842	110 112
$1a_1 2a_1 3a_1 1b_1 1b_2 \sum_{val} \varepsilon \sum_{all} \varepsilon$	$\begin{array}{r} -10.8920\\ -\ 0.5805\\ -\ 0.0373\\ -\ 0.0339\\ -\ 0.1909\\ -\ 1.6513\\ -23.4353\end{array}$	- 10.8893 - 0.5563 - 0.0116 - 0.0309 - 0.2323 - 1.6313 - 23.4099	Cand - 10.8888 - 0.5468 0.0005 - 0.0300 - 0.2492 - 1.6210 - 23.3986	- 10.8887 - 0.5310 0.0210 - 0.0290 - 0.2758 - 1.6006 - 23.3780	- 10.8895 - 0.5190 0.0338 - 0.0287 - 0.2923 - 1.5837 - 23.3627	- 10.8898 - 0.5142 0.0378 - 0.0286 - 0.2981 - 1.5776 - 23.3572	< 90 < 90

Table 15. The $1a_1^2 2a_1^2 1b_2^2 3a_1^2 1b_1^{-2}B_1$ state of CH₂

Table 16. The $1a_1^2 2a_1^2 1b_2^2 3a_1 1b_1^2 {}^2A_1$ state of CH_2^-

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1$ $2a_1$ $3a_1$ $1b_1$ $1b_2$ $\Sigma_{val}\varepsilon$ E	$\begin{array}{r} -12.1463\\ -2.3676\\ -2.0011\\ -1.8168\\ -2.0405\\ -14.4509\\ -38.7432\end{array}$	- 12.1446 - 2.3542 - 1.9719 - 1.8194 - 2.0840 - 14.4871 - 38.7762	- 12.1437 - 2.3497 - 1.9556 - 1.8199 - 2.1013 - 14.4974 - 38.7846	- 12.1421 - 2.3432 - 1.9224 - 1.8203 - 2.1282 - 14.5062 - 37.7901	- 12.1418 - 2.3391 - 1.8940 - 1.8203 - 2.1452 - 14.5032 - 38.7869	- 12.1419 - 2.3377 - 1.8817 - 1.8203 - 2.1513 - 14.5003 - 38.7842	145 143
			Can	onical			
$1a_1 2a_1 3a_1 1b_1 1b_2 \Sigma_{val} \varepsilon \Sigma_{all} \varepsilon$	$\begin{array}{r} -10.9004\\ -\ 0.5585\\ -\ 0.1659\\ 0.0321\\ -\ 0.1864\\ -\ 1.5915\\ -\ 23.3923\end{array}$	$\begin{array}{r} -10.8943\\ -\ 0.5375\\ -\ 0.1297\\ 0.0356\\ -\ 0.2279\\ -\ 1.5893\\ -23.3779\end{array}$	$\begin{array}{r} -10.8922\\ -\ 0.5303\\ -\ 0.1111\\ 0.0367\\ -\ 0.2452\\ -\ 1.5889\\ -23.3733\end{array}$	$\begin{array}{r} -10.8898\\ -\ 0.5205\\ -\ 0.0742\\ 0.0379\\ -\ 0.2731\\ -\ 1.5856\\ -23.3652\end{array}$	10.8895 0.5154 0.0426 0.0380 0.2913 1.5800 23.3590	$\begin{array}{r} -10.8898\\ -\ 0.5142\\ -\ 0.0286\\ 0.0378\\ -\ 0.2981\\ -\ 1.5776\\ -23.3572\end{array}$	< 90 < 90

presented here show that in seven cases the sum of the valence orbital ε_i correctly predicted the linear geometry, and in one case it satisfactorily predicted the non-linear geometry. In three cases it predicted the molecule to be linear when it wasn't. But the most consistent trend was shown in 14 out of the 25 cases where the predicted bond angle was significantly less than that shown by $E_{\rm SCF}$. This error was not due to the effect of the core orbitals since inclusion of them in the sum only made the quantitative predictions worse.

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1$ $2a_1$	-17.5004 - 3.7312	17.4975 3.7142	- 17.4946 - 3.7075	- 17.4873 - 3.6965		-17.4782 - 3.6849	
$3a_1 \\ 1b_1$	- 3.0756 - 2.9910	- 3.0537 - 2.9957	- 3.0432 - 2.9975	- 3.0251 - 3.0001	- 3.0137 - 3.0020	- 3.0100 - 3.0025	
$1b_2$ $\Sigma_{val} \hat{\epsilon}$	-3.2291 -20.0718	-3.2814 -20.0986	-3.3026 -20.1066	-3.3364 -20.1160	- 3.3578 20.1192	-3.3653 -20.1204	180
E	- 55.0726	- 55.0935	– 55.0958 Cano	- 55.0905 onical	- 55.0811	- 55.0767	110
$1a_1$ $2a_1$ $3a_1$ $1b_1$ $1b_2$ $\sum_{val} \varepsilon$ $\sum_{zu} \varepsilon$	- 16.1329 - 1.5835 - 0.9448 - 0.3734 - 1.0614 - 7.1794 - 39.4452	- 16.1208 - 1.5564 - 0.9179 - 0.3689 - 1.0981 - 7.1448 - 39.3864	$\begin{array}{r} -16.1133 \\ -1.5439 \\ -0.9047 \\ -0.3661 \\ -1.1125 \\ -7.1222 \\ -39.3488 \end{array}$	- 16.0972 - 1.5215 - 0.8816 - 0.3605 - 1.1344 - 7.0750 - 39.2694	16.0836 1.5040 0.8660 0.3557 1.1464 7.0328 39.2000		< 90 < 90

Table 17. The $1a_1^2 2a_1^2 1b_2^2 3a_1^{2\,1}A_1$ state of NH₂⁺

Table 18. The $1a_1^2 2a_1^2 1b_2^2 3a_1^1 1b_1^{1} {}^{3}B_1$ state of NH₂⁺

	90	110	120	140	160	180	α _e
			ICS	SCF			
$1a_1$	-17.4585	-17.4584	-17.4572	- 17.4531	- 17.4491	- 17.4472	
$2a_1$	- 3.6999	- 3.6874	- 3.6835	- 3.6786	- 3.6766	- 3.6764	
$3a_1$	- 3.2364	- 3.2008	- 3.1820	- 3.1448	- 3.1142	- 3.1013	
$1b_1$	- 3.0906	- 3.0947	- 3.0961	- 3.0984	- 3.1004	- 3.1013	
$1b_2$	- 3.2235	- 3.2747	- 3.2956	- 3.3291	- 3.3509	- 3.3589	
$\Sigma_{\rm val} \varepsilon$	-20.1738	-20.2197	-20.2363	- 20.2586	-20.2696	-20.2732	180
E	-55.0908	-55.1367	-55.1505	-55.1648	- 55.1679	-55.1676	168
			Cano	onical			
$1a_1$	-16.0787	-16.0732	- 16.0694	16.0609	-16.0524	-16.0486	
$2a_1$	- 1.5345	- 1.5159	- 1.5086	- 1.4969	- 1.4889	- 1.4863	
$3a_1$	- 1.0772	- 1.0419	- 1.0235	- 0.9884	- 0.9596	- 0.9476	
$1b_1$	- 0.9622	- 0.9597	- 0.9579	- 0.9537	- 0.9495	- 0.9476	
$1b_2$	- 1.0344	- 1.0751	- 1.0918	- 1.1182	- 1.1337	- 1.1390	
$\tilde{\Sigma_{ral}}\varepsilon$	- 7.1772	- 7.1836	- 7.1822	- 7.1723	- 7.1543	- 7.1470	110
$\Sigma_{\rm all} \varepsilon$	- 39.3346	- 39.3300	- 39.3210	-39.2941	- 39.2591	- 39.2442	< 90

From the limited data shown here, it would appear possible in some of these 14 cases that the sum of the ε_i might show a minimum, and therefore better correlation with the total energy, if calculations were done at some angles between 90° and 110°. However, other work by Krauss [11] reports decreases in the sum of the ε_i at 5° intervals over parts of this range for ${}^{1}A_1$ CH₂, ${}^{2}B_1$ NH₂, and ${}^{2}B_1$ H₂O⁺ which seem to be linear with respect to decrease in angle.

	90	110	120	140	160	180	α _e
			ICS	SCF			
$1a_12a_13a_11b_11b_2\Sigma_{val}\varepsilonE$	- 17.4819 - 3.7056 - 3.1020 - 3.0089 - 3.2441 - 19.9172 - 54.8810	- 17.4825 - 3.6956 - 3.0722 - 3.0107 - 3.2927 - 19.9966 - 54.9627	$\begin{array}{r} -17.4819\\ -3.6923\\ -3.0574\\ -3.0109\\ -3.3118\\ -20.0300\\ -54.9939\end{array}$	- 17.4802 - 3.6880 - 3.0299 - 3.0105 - 3.3414 - 20.0798 - 55.0402	$\begin{array}{r} -17.4788\\ -3.6856\\ -3.0100\\ -3.0102\\ -3.3592\\ -20.1100\\ -55.0676\end{array}$	- 17.4782 - 3.6849 - 3.0025 - 3.0100 - 3.3653 - 20.1204 - 55.0767	180 180
			Cano	onical			
$1a_1 \\ 2a_1 \\ 3a_1 \\ 1b_1 \\ 1b_2 \\ \sum_{val} \varepsilon \\ \sum_{all} \varepsilon$	- 16.0832 - 1.5263 - 0.4793 - 0.8617 - 1.0374 - 6.8508 - 39.0172	- 16.0824 - 1.5137 - 0.4422 - 0.8620 - 1.0804 - 6.9122 - 39.0770	- 16.0816 - 1.5090 - 0.4239 - 0.8618 - 1.0982 - 6.9380 - 39.1012	- 16.0800 - 1.5026 - 0.3899 - 0.8613 - 1.1270 - 6.9818 - 39.1418	$\begin{array}{r} -16.0787\\ -1.4986\\ -0.3638\\ -0.8608\\ -1.1443\\ -7.0048\\ -39.1622\end{array}$	- 16.0783 - 1.4974 - 0.3538 - 0.8607 - 1.1504 - 7.0170 - 39.1736	180 180

Table 19. The $1a_1^2 2a_1^2 1b_2^2 1b_1^{2} A_1$ state of NH₂⁺

Table 20. The $1a_1^2 2a_1^2 1b_2^2 3a_1^2 1b_1^2 {}^2B_1$ state of NH₂

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1$	-17.1816	-17.1801	-17.1783	-17.1733	-17.1688	-17.1668	
$2a_1$	- 3.4327	- 3.4159	- 3.4092	- 3.3979	- 3.3887	- 3.3850	
$3a_1$	- 2.7931	- 2.7678	- 2.7553	- 2.7334	- 2.7191	- 2.7143	
$1b_1$	- 2.7910	- 2.7944	- 2.7957	- 2.7979	- 2.7996	- 2.8003	
$1b_2$	- 2.9492	- 2.9993	- 3.0192	- 3.0507	- 3.0704	- 3.0773	
$\Sigma_{\rm val}$	-21.1410	-21.1604	-21.1631	-21.1619	-21.1560	-21.1535	127
Ε	- 55.5043	- 55.5204	- 55.5198	- 55.5083	- 55.4936	- 55.4872	114
			Can	onical			
$1a_1$	-15.5763	-15.5684	-15.5634	-15.5526	-15.5433	- 15.5395	
$2a_1$	- 1.1295	- 1.1059	- 1.0954	- 1.0765	- 1.0613	- 1.0553	
$3a_1$	- 0.4805	- 0.4502	- 0.4356	- 0.4099	- 0.3928	- 0.3871	
$1b_1$	- 0.5004	- 0.4953	- 0.4922	- 0.4857	- 0.4801	- 0.4778	
$1b_2$	- 0.6019	- 0.6424	- 0.6584	- 0.6829	- 0.6969	- 0.7017	
$\Sigma_{\rm val}\epsilon$	- 4.9242	- 4.8923	- 4.8710	- 4.8243	- 4.7821	- 4.7660	< 90
$\Sigma_{\rm all} \varepsilon$	- 36.0768	- 36.0291	- 35.9978	-35.9295	-35.8687	- 35.8450	< 90

This tendency to produce bond angles systematically too small can be predicted from Eq. (7). If the hydrogens carry any net positive charge, $V_N - V_e$ will tend to increase as the bond angle is decreased and the charges are brought closer together. Hence $\Sigma 2\varepsilon_i$ must be systematically wrong in just the opposite direction so the two quantities will give E_{SCF} when added together. The few cases where the bond

	90	110	120	140	160	180	α
			IC	SCF			
$1a_1$ $2a_1$ $3a_1$ $1b_1$ $1b_2$ $\sum_{val} \varepsilon$ E	$\begin{array}{r} -17.1777\\ -3.4102\\ -2.9394\\ -2.7051\\ -2.9476\\ -21.0652\\ -55.4204\end{array}$	-17.1767 -3.3980 -2.9031 -2.7086 -2.9974 -21.1043 -55.4644	- 17.1753 - 3.3939 - 2.8839 - 2.7098 - 3.0174 - 21.1261 - 55.4769	- 17.1717 - 3.3885 - 2.8459 - 2.7118 - 3.0492 - 21.1449 - 55.4884	- 17.1684 - 3.3856 - 2.8140 - 2.7135 - 3.0698 - 21.1518 - 55.4887	- 17.1668 - 3.3850 - 2.8003 - 2.7143 - 3.0773 - 21.1535 - 55 4872	180 153
			Can	onical			
$1a_1 2a_1 3a_1 1b_1 1b_2 \Sigma_{\text{val}} \varepsilon \Sigma_{\text{all}} \varepsilon$	- 15.5654 - 1.0993 - 0.6195 - 0.3993 - 0.5928 - 4.8023 - 35.9331	$\begin{array}{r} -15.5594\\ -1.0815\\ -0.5804\\ -0.3965\\ -0.6349\\ -4.8062\\ -35.9250\end{array}$	- 15.5561 - 1.0747 - 0.5607 - 0.3949 - 0.6521 - 4.8041 - 35.9163	- 15.5489 - 1.0643 - 0.5226 - 0.3916 - 0.6795 - 4.7934 - 35.8913	- 15.5424 - 1.0575 - 0.4911 - 0.3885 - 0.6960 - 4.7751 - 35.8599	- 15.5395 - 1.0553 - 0.4778 - 0.3871 - 0.7017 - 4.7660 - 35.8450	110< 90

Table 21. The $1a_1^2 2a_1^2 1b_2^2 3a_1 1b_1^2 {}^2A_1$ state of NH₂

Table 22. The $1a_1^2 2a_1^2 1b_2^2 3a_1^2 1b_1^{2-1}A_1$ state of NH₂⁻

	90	110	120	140	160	180	α_e
			I	CSCF			
$1a_1 2a_1 3a_1 1b_1 1b_2 \Sigma_{val} \varepsilon E$	$\begin{array}{r} -16.9322\\ -3.1503\\ -2.5212\\ -2.4294\\ -2.6845\\ -21.5708\\ -55.4353\end{array}$	- 16.9319 - 3.1335 - 2.4951 - 2.4323 - 2.7310 - 21.5838 - 55.4478	- 16.9312 - 3.1270 - 2.4819 - 2.4333 - 2.7494 - 21.5832 - 55.4452	- 16.9289 - 3.1150 - 2.4581 - 2.4350 - 2.7779 - 21.5720 - 55.4298	- 16.9269 - 3.1052 - 2.4420 - 2.4362 - 2.7957 - 21.5582 - 55.4118	- 16.9259 - 3.1010 - 2.4366 - 2.4366 - 2.8019 - 21.5522 - 55.4040	115 110
			Ca	inonical			
$1a_1 \\ 2a_1 \\ 3a_1 \\ 1b_1 \\ 1b_2 \\ \sum_{val} \varepsilon \\ \sum_{all} \varepsilon$	$\begin{array}{r} -15.1475\\ -0.7380\\ -0.0865\\ -0.0033\\ -0.2095\\ -2.0746\\ -32.3696\end{array}$	$\begin{array}{r} -15.1409\\ -\ 0.7144\\ -\ 0.0528\\ 0.0019\\ -\ 0.2511\\ -\ 2.0404\\ -\ 32.3222\end{array}$	$\begin{array}{r} -15.1376\\ -0.7046\\ -0.0370\\ 0.0044\\ -0.2677\\ -2.0274\\ -32.3010\\ \end{array}$	$\begin{array}{r} -15.1308\\ -0.6871\\ -0.0092\\ 0.0093\\ -0.2933\\ -1.9978\\ -32.2594\end{array}$	- 15.1251 - 0.6729 0.0093 0.0136 - 0.3082 - 2.0080 - 32.2582	$\begin{array}{r} -15.1227\\ -0.6670\\ 0.0155\\ 0.0155\\ -0.3131\\ -2.0222\\ -32.2676\end{array}$	< 90, 180 < 90

angle was overestimated were the cases where one would expect the hydrogens to carry a net negative charge, and the bulk of the cases such as H_2O where the bond angle was underestimated were just those cases where the hydrogens were expected to carry a net positive charge.

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1$	-23.1359	-23.1329	-23.1300	-23.1226	-23.1159	-23.1131	
$2a_1$	- 4.7054	- 4.6913	- 4.6857	- 4.6766	- 4.6703	- 4.6679	
3a1	- 3.9189	- 3.8909	- 3.8780	- 3.8558	- 3.8410	- 3.8360	
$1b_1$	- 3.9352	- 3.9401	- 3.9422	- 3.9458	- 3.9484	- 3.9495	
$1b_2$	- 4.0531	- 4.1071	- 4.1290	- 4.1637	- 4.1856	- 4.1932	
$\Sigma_{\rm val}\varepsilon$	-29.2900	- 29.3187	-29.3276	-29.3380	-29.3422	-29.3437	180
E	- 75.5617	-75.5844	-75.5875	-75.5832	- 75.5741	-75.5698	119
			Cane	onical			
$1a_1$	-21.1317	-21.1184	-21.1101	-21.0919	-21.0764	-21.0702	
$2a_1$	- 1.8651	- 1.8412	- 1.8296	- 1.8080	- 1.7914	- 1.7850	
$3a_1$	- 1.0931	- 1.0615	- 1.0460	- 1.0185	- 0.9996	- 0.9929	
$1b_1$	- 1.1444	- 1.1366	- 1.1316	- 1.1210	- 1.1120	- 1.1084	
$1b_2$	- 1.1850	- 1.2213	- 1.2354	- 1.2561	- 1.2674	- 1.2708	
$\Sigma_{val} \varepsilon$	- 9.4308	- 9.3846	- 9.3536	- 9.2862	- 9.2288	- 9.2058	< 90
$Σ_{all} ε$	-51.6942	-51.6214	-51.5738	-51.4700	- 51.3816	-51.3462	< 90

Table 23. The $1a_1^2 2a_1^2 1b_2^2 3a_1^2 1b_1^2 B_1 H_2O^+$

Table 24. The $1a_1^2 2a_1^2 1b_2^2 3a_1^1 1b_1^2 {}^2A_1$ state of H₂O⁺

	90	110	120	140	160	180	α_e
			IC	SCE			
			IC.	501			
$1a_1$	-23.1235	-23.1237	-23.1226	-23.1190	-23.1149	-23.1131	
$2a_1$	- 4.6880	- 4.6778	- 4.6744	- 4.6700	- 4.6683	4.6679	
$3a_1$	- 4.0868	- 4.0472	- 4.0274	- 3.9903	- 3.9611	- 3.9495	
$1b_1$	- 3.8232	- 3.8278	- 3.8296	- 3.8326	- 3.8350	- 3.8360	
$1b_2$	- 4.0572	- 4.1092	- 4.1305	- 4.1640	- 4.1856	- 4.1932	
$\Sigma_{\rm val} \varepsilon$	- 29.2236	- 29.2768	-29.2964	-29.3235	- 29.3389	-29.3437	180
E	- 75.4704	-75.5243	-75.5416	-75.5615	- 75.5685	-75.5698	180
			Can	nical			
			Can	Jincal			
$1a_1$	-21.1034	-21.0977	-21.0935	-21.0837	-21.0743	-21.0702	
$2a_1$	- 1.8293	- 1.8141	- 1.8074	- 1.7958	- 1.7879	- 1.7850	
$3a_1$	- 1.2402	- 1.2019	- 1.1827	- 1.1469	- 1.1193	- 1.1084	
$1b_1$	- 1.0096	- 1.0070	- 1.0049	- 1.0000	- 0.9950	- 0.9929	
$1b_2$	- 1.1694	- 1.2097	- 1.2261	- 1.2514	- 1.2661	- 1.2708	
$\Sigma_{\rm val} \varepsilon$	- 9.2568	- 9.2635	- 9.2595	- 9.2413	- 9.2173	- 9.2058	110
$\Sigma_{\rm all} \varepsilon$	- 51.4636	-51.4589	- 51.4465	- 51.3817	- 51.3659	- 51.3462	< 90

The ICSCF results are somewhat superior to the canonical results. The $1a_1$ ICSCF orbital energy changes with angle, on the average, only half as much as does the RHF ε_i (but notice later that wherever the ICSCF makes the wrong prediction, it is, by definition, due to the change of the $1a_1$ energy). Except for

	90	110	120	140	160	180	α _e
			IC	SCF			
$1a_1$ $2a_1$ $3a_1$ $1b_1$ $1b_2$ $\sum_{val} \varepsilon$ E	- 22.8025 - 4.3688 - 3.5968 - 3.4855 - 3.7358 - 30.3738 - 75.9787	- 22.8010 - 4.3548 - 3.5648 - 3.4896 - 3.7887 - 30.3958 - 75.9959	- 22.7975 - 4.3493 - 3.5497 - 3.4914 - 3.8098 - 30.4004 - 75.9954	- 22.7911 - 4.3400 - 3.5230 - 3.4948 - 3.8429 - 30.4014 - 75.9835	22.7849 - 4.3330 - 3.5048 - 3.4974 - 3.8638 - 30.3980 - 75.9678	22.7823 - 4.3301 - 3.4985 - 3.4985 - 3.8711 - 30.3964 - 75.9608	135 115
			Can	onical			
$1a_1 2a_1 3a_1 1b_1 1b_2 \Sigma_{val} \varepsilon \Sigma_{all} \varepsilon$	$\begin{array}{r} -20.5650\\ -\ 1.3761\\ -\ 0.5928\\ -\ 0.5117\\ -\ 0.6891\\ -\ 6.3394\\ -\ 47.4694\end{array}$	- 20.5548 - 1.3552 - 0.5576 - 0.5055 - 0.7291 - 6.2948 - 47.4044	$\begin{array}{r} -20.5481 \\ -1.3452 \\ -0.5405 \\ -0.5016 \\ -0.7447 \\ -6.2640 \\ -47.3602 \end{array}$	$\begin{array}{r} -20.5332\\ -1.3262\\ -0.5102\\ -0.4930\\ -0.7677\\ -6.1942\\ -47.2606\end{array}$	- 20.5199 - 1.3110 - 0.4894 - 0.4853 - 0.7803 - 6.1320 - 47.1718	$\begin{array}{r} -20.5144\\ -1.3048\\ -0.4821\\ -0.4821\\ -0.7843\\ -6.1066\\ -47.1354\end{array}$	< 90 < 90

Table 25. The $1a_1^2 2a_1^2 1b_2^2 3a_1^2 1b_1^2 {}^{1}A_1$ state of H₂O

BeH₂, e_{1a} changes less than 15 kcal (and usually only half that amount) as the bond angle varies from 90–180°. The other orbital energy curves are generally similar to the RHF results. The $2a_1$ orbital energy still has a positive slope, but perhaps a little less steep. The $1b_2$ and $3a_1$ orbital energy curves are nearly identical in shape to the canonical result. The $1b_1$ curves are generally even flatter than the canonical curves in closer agreement with Walsh's assumptions. The dependence of the orbital energy on whether the orbital is occupied or vacant is less pronounced than for the canonical orbitals but still sufficient to cause the orbital energy plots to vary in appearance from molecule to molecule rather more than Walsh assumed.

By definition, the sum of the ICSCF orbital energies is the SCF energy, so the only relevant question is whether the sum over only the valence orbitals correlates with the geometry. In the 25 examples considered here, the correlation was satisfactory for all 8 of the linear cases and 8 of the non-linear cases. In the remaining 9 non-linear cases, the bond angle was significantly overestimated. In these latter cases, however, this occurred because the energy curve was quite flat so that a small error in the energy caused a large deviation in the bond angle. On the whole, the ICSCF results are right about twice as often as the canonical results. There is no apparent qualitative difference between the cases where the ICSCF valence energy sum works and those where it does not. In almost every case the $1a_1$ orbital energy has a small positive slope so that omitting it leads systematically to too large a bond angle.

Because the results for AH_2 molecules tend to be too good [3], it is of interest to consider three other molecules: CO_2 , Li_2O , and HCN. Carbon dioxide is a

Fig. 1. Orbital energies for the $1a_1^2 2a_1^2 1b_2^{2\,1}A_1$ state of BeH₂

Fig. 2. Orbital energies for the $1a_1^2 2a_1^2 1b_2^{2\,1}A_1$ state of BH₂⁺

Fig. 3. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 A_1$ state of BH₂

Fig. 4. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 1b_1 {}^2B_1$ state of BH₂

Fig. 5. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^{2\,1}A_1$ state of BH₂⁻

Fig. 6. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1 1b_1 {}^3B_1$ state of BH₂⁻

Fig. 7. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 1b_1^2 A_1$ state of BH₂

Fig. 8. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 A_1$ state of CH₂⁺

Fig. 9. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 1b_1^{-2}B_1$ state of CH₂⁺

Fig. 10. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^{2\,1}A_1$ state of CH₂

Fig. 11. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1 1b_1^{-3}B_1$ state of CH₂

Fig. 12. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 1b_1^{2\,1}A_1$ state of CH₂

Fig. 13. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 1b_1 {}^2B_1$ state of CH⁻₂

Fig. 14. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1 1b_1^2 {}^2A_1$ state of CH₂

Fig. 15. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^{2\,1}A_1$ state of NH₂⁺

Fig. 16. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1 1b_1^{-3}B_1$ state of NH₂⁺

Fig. 17. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 1b_1^{2-1}A_1$ state of NH₂⁺

Fig. 18. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 1b_1 {}^2B_1$ state of NH₂

304

Fig. 19. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1 1b_1^2 {}^2A_1$ state of NH₂

Fig. 20. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 1b_1^{2\,1}A_1$ state of NH₂⁻

Fig. 21. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 1b_1^{-2}B_1$ state of OH₂⁺

Fig. 22. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1 1b_1^2 {}^2A_1$ state of OH₂⁺

Fig. 23. Orbital energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 1b_1^{2-1}A_1$ state of OH₂

good example of an AB₂ system for which all theories work. Walsh's diagram, the canonical energies (Fig. 24a), and the ICSCF energies (Fig. 24b) are quite similar, and all predict a linear molecule. When considered in detail, it is seen that the $3a_1$ and $2b_2$ orbitals change with energy more than Walsh imagined, but their sum is nearly constant. The $4a_1$ orbital (analogous to the $2a_1$ orbital for AH₂) has a slight positive slope rather than the large negative slope predicted by Walsh. The $1b_1$ and $5a_1$ orbital energies are nearly constant in agreement with Walsh, but the slope of the $5a_1$ orbital has the opposite sign from his prediction. The $3b_2$ orbital is in the right place, and the slope has the predicted sign but a rather smaller magnitude. The $1a_2$, $4b_2$, and the ICSCF $6a_1$ and $2b_1$ are just as Walsh

Fig. 24. a Canonical energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 2b_2^2 4a_1^2 1b_1^2 5a_1^2 3b_2^2 1a_2^2 4b_2^2 1A_1$ state of CO₂. b ICSCF energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 2b_2^2 4a_1^2 1b_1^2 5a_1^2 3b_2^2 1a_2^2 4b_2^2 1A_1$ state of CO₂.

Fig. 25. a Canonical energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 2b_2^2 4a_1^2 1b_1^{2\,1}A_1$ state of Li₂O. b ICSCF energies for the $1a_1^2 2a_1^2 1b_2^2 3a_1^2 2b_2^2 4a_1^2 1b_1^{2\,1}A_1$ state of Li₂O

predicted. The molecule in this model is linear largely because of the $4b_2$ nonbonding π electrons.

The Li_2O molecule is formally similar to H_2O in its valence electron structure and hence should be bent in the Walsh model. The canonical orbital energy plot (Fig. 25a) resembles that for H_2O although the slope of the curves is much

Fig. 26. a Canonical energies for the $1a^2 2a^2 3a^2 4a^2 5a^2 1b^2 6a^2 A_1$ state of HCN. b ICSCF energies for the $1a^2 2a^2 3a^2 4a^2 5a^2 1b^2 6a^{2\,1}A_1$ state of HCN

	90	120	150	180	α _e
		IC	CSCF		
$1a_1$	-23.4706	-23.5096	-23.5211	-23.5225	
$2a_1$	-14.5107	- 14.4714	-14.4601	-14.4582	
$3a_1$	- 4.7893	- 4.7194	- 4.6903	- 4.6826	
$4a_1$	- 3.9730	- 3.9572	- 3.9499	- 3.9472	
$5a_1$	- 3.9166	- 3.8954	- 3.8891	- 3.8896	
$1b_2$	-23.4708	-23.5097	-23.5212	-23.5225	
$2b_2$	- 4.4999	- 4.5743	- 4.6116	- 4.6238	
$3b_2$	- 3.8376	- 3.8623	- 3.8718	- 3.8738	
$4b_2$	- 3.5327	- 3.6464	- 3.6793	- 3.6836	
$1b_1$	- 3.9183	- 3.8968	- 3.8901	- 3.8896	
$1a_2$	- 3.6401	- 3.6737	- 3.6826	- 3.6836	
$\Sigma_{\rm val} \varepsilon$	-64.3150	-64.4510	64.5294	- 64.5476	180
E	- 187.1190	-187.4328	-187.5342	-187.5541	180
		Can	onical		
$1a_1$	-20.6163	-20.6601	-20.6763	-20.6767	
$2a_1$	-11.5110	-11.5027	-11.5076	-11.5079	
$3a_1$	- 1.6834	- 1.6130	- 1.5839	- 1.5733	
$4a_1$	- 0.7964	- 0.8017	- 0.8021	- 0.7982	
$5a_1$	- 0.7278	- 0.7237	- 0.7349	- 0.7390	
$1b_2$	-20.6164	- 20.6602	-20.6764	-20.6767	
$2b_2$	- 1.3730	- 1.4659	- 1.5134	- 1.5262	
3b2	- 0.6793	- 0.7203	- 0.7387	- 0.7404	
$4b_2$	- 0.3932	- 0.5063	- 0.5410	- 0.5456	
1 <i>b</i> 1	- 0.7440	- 0.7376	- 0.7398	- 0.7390	
$1a_2$	- 0.4923	- 0.5325	- 0.5459	- 0.5456	
$\Sigma_{\rm val} \epsilon$	-13.7788	-14.2020	14.3994	- 14.4146	180
$\Sigma_{all} \epsilon$	-119.2662	- 119.8480	-120.1200	-120.1372	180

Table 26. The ground state of CO_2

	90	120	150	180	Ø.e
		IC	SCF		
$1a_1$ $2a_1$ $3a_1$ $4a_1$ $1b_2$ $2b_2$ $1b_1$ $\Sigma_{val}\varepsilon$ E	- 22.3983 - 5.1373 - 3.5546 - 2.8754 - 5.1355 - 2.8798 - 2.8782 - 24.3760 - 89.7184	- 22.4000 - 5.1332 - 3.5569 - 2.8819 - 5.1328 - 2.8892 - 2.8813 - 24.4186 - 89.7507	- 22.3981 - 5.1333 - 3.5567 - 2.8831 - 5.1332 - 2.8939 - 2.8828 - 24.4330 - 89.7624	- 22.3975 - 5.1340 - 3.5562 - 2.8829 - 5.1340 - 2.8953 - 2.8829 - 24.829 - 24.4346 - 89.7654	180 180
		Can	onical		
$1a_1$ $2a_1$ $3a_1$ $4a_1$ $1b_2$ $2b_2$ $1b_1$ $\sum_{val} \varepsilon$	- 20.3532 - 2.4081 - 1.0338 - 0.2966 - 2.4062 - 0.3163 - 0.2751 - 3.8436	- 20.3408 - 2.3806 - 1.0200 - 0.2776 - 2.3801 - 0.3191 - 0.2695 - 3.7724	$\begin{array}{r} -20.3312 \\ -2.3686 \\ -1.0106 \\ -0.2661 \\ -2.3686 \\ -0.3219 \\ -0.2641 \\ -3.7254 \end{array}$	$\begin{array}{r} -20.3281 \\ -2.3652 \\ -1.0070 \\ -0.2618 \\ -2.3651 \\ -0.3227 \\ -0.2618 \\ -3.7066 \end{array}$	< 90

Table 27. The ground state of Li₂O

less steep. As discussed previously, for a molecule like H_2O or Li_2O where the H or Li carries a net positive charge, the sum of the canonical valence orbital energies gives too small a bond angle. In the case of Li_2O which is linear, this sum behaves just as it did for H_2O and shows no minimum above 90°. In the ICSCF model, the slope of each of the orbital energy curves (Fig. 25b) is slightly negative so the sum of the valence energies correctly predicts a linear molecule.

In the Walsh model, a molecule such as HCN is intermediate between AH_2 and AB_2 . The 1*a* and 2*a* orbitals are 1*s* cores. The 3*a* orbital is supposedly analogous to $3a_1$ and $2b_2$, in the AB_2 system and was predicted by Walsh to not vary with angle. The 4*a* and 5*a* orbitals are the sigma bonds (analogous to $2a_1$, $1b_2$ in AH_2 or $4a_1$, $3b_2$ in AB_2). Walsh predicted both would have negative slopes in analogy to his predictions for AH_2 and AB_2 systems. Finally, the 1*b* and 6*a* orbitals are the π orbitals (analogous to $1b_1$, $3a_1$ in AH_2 or $1b_1$, $5a_1$ in AB_2). The 1*b* remains a π orbital in the bent molecule and was predicted to be independent of angle, while the 6*a* orbital energy was predicted that HCN should be linear. The sum of the canonical valence orbital energies, on the other hand, incorrectly predicts that HCN is bent (the sum is still decreasing down to 90°). This is largely due to the positive slopes of the 3*a* and 5*a* orbitals (Fig. 26a). The ICSCF orbital energy picture (Fig. 26b) is qualitatively similar to the canonical energies with only slight changes in the magnitude of the slopes (particularly of the 4*a* orbital).

	90	120	150	180	α
		IC	SCF		
1 <i>a</i>	-17.5783	-17.5734	-17.5672	- 17.5651	
2a	-13.3603	-13.3761	-13.3854	-13.3881	
3a	- 3.6057	- 3.5707	- 3.5559	- 3.5520	
4a	- 3.1404	- 3.2057	- 3.2433	- 3.2555	
5a	- 2.9428	- 2.9248	- 2.9148	- 2.9114	
6a	- 2.8485	- 2.8574	- 2.8649	- 2.8642	
1 <i>b</i>	- 2.8724	- 2.8675	- 2.8627	- 2.8643	
$\Sigma_{\rm val} \epsilon$	-30.8196	-30.8522	-30.8832	-30.8948	180
E	-92.6970	-92.7512	-92.7884	-92.8009	180
		Can	onical		
1a	-15.6741	- 15.6533	-15.6420	- 15.6388	
2a	-11.3286	-11.3316	-11.3367	-11.3387	
3a	- 1.3381	- 1.2895	- 1.2714	- 1.2673	
4 <i>a</i>	- 0.7627	- 0.7901	- 0.8083	- 0.8144	
5a	- 0.6162	- 0.5906	- 0.5808	- 0.5782	
6a	- 0.4941	- 0.5030	- 0.5106	- 0.5130	
1b	- 0.5480	- 0.5248	- 0.5154	- 0.5131	
$\Sigma_{\rm val}\varepsilon$	- 7.5022	- 7.3960	- 7.3730	- 7.3720	< 90
$\Sigma_{\rm all} \varepsilon$	-61.5076	-61.3658	-61.3304	-61.3270	< 90

Table 28. The ground state of HCN

Table 29. The $1a_1^2 2a_1^2 1e^{4} A_1$ state of BH₃

	90	100	110	120	α _e
		IC	SCF		
$1a_1$	- 8.2158	- 8.2094	- 8.2022	- 8.1949	
$2a_1$	- 1.8189	- 1.8080	- 1.8004	- 1.7953	
1 <i>e</i>	- 1.5404	- 1.5622	- 1.5806	- 1.5962	
$3a_1$	- 1.3629	- 1.3459	- 1.3241	- 1.2983	
$\Sigma_{val}\varepsilon$	- 9.7994	- 9.8648	- 9.9232	- 9.9754	120
E	-26.2309	-26.2835	-26.3278	-26.3651	120
		Can	onical		
$1a_1$	- 7.6331	- 7.6284	- 7.6245	- 7.6209	
$2a_1$	- 0.7417	- 0.7252	- 0.7139	- 0.7063	
1e	- 0.4399	- 0.4605	- 0.4795	- 0.4963	
$3a_1$	- 0.0023	0.0155	0.0359	0.0591	
$\hat{\Sigma_{\rm val}}\varepsilon$	- 3.2430	- 3.2924	- 3.3458	- 3.3978	120
$\Sigma_{\rm all} \varepsilon$	-18.5092	-18.5492	-18.5948	-18.6396	120

Yet these small quantitative changes are sufficient so that the ICSCF valence orbital energies correctly predict the molecule to be linear.

Calculations have also been carried out on some AH_3 molecules with less satisfactory results. For these molecules it takes a rather sophisticated basis

	90	100	110	120	α _e
		ICS	SCF		
$1a_1 2a_1 1e 3a_1 \Sigma_{val} \varepsilon E$	- 12.3907 - 2.6436 - 2.2384 - 2.0767 - 14.2408 - 39.0221	- 12.3891 - 2.6308 - 2.2630 - 2.0590 - 14.3136 - 39.0916	- 12.3863 - 2.6210 - 2.2838 - 2.0375 - 14.3772 - 39.1499	- 12.3829 - 2.6135 - 2.3015 - 2.0131 - 14.4330 - 39.1989	120 120
		Can	onical		
$1a_1 2a_1 1e 3a_1 \Sigma_{val} \varepsilon \Sigma_{all} \varepsilon$	$\begin{array}{r} -11.6892 \\ -1.3125 \\ -0.8885 \\ -0.3643 \\ -6.1790 \\ -29.5664 \end{array}$	- 11.6867 - 1.2943 - 0.9093 - 0.3405 - 6.2258 - 29.5992	$\begin{array}{r} -11.6849 \\ -1.2806 \\ -0.9287 \\ -0.3143 \\ -6.2760 \\ -29.6458 \end{array}$	$\begin{array}{r} -11.6833 \\ -1.2702 \\ -0.9462 \\ -0.2853 \\ -6.3250 \\ -29.6916 \end{array}$	120 120

Table 30. The $1a_1^2 2a_1^2 1e^{4} A_1$ state of CH₃⁺

Table 31. The $1a_1^2 2a_1^2 1e^4 3a_1^2 A_1$ state of CH₃

	90	100	110	120	α _e
		IC	SCF		
$1a_1 2a_1 1e 3a_1 \Sigma_{val}\varepsilon E$	- 12.1692 - 2.4545 - 2.0467 - 2.0015 - 15.0973 - 39.4355	- 12.1685 - 2.4391 - 2.0718 - 1.9764 - 15.1418 - 39.4787	- 12.1671 - 2.4271 - 2.0937 - 1.9442 - 15.1732 - 39.5074	- 12.1655 - 2.4179 - 2.1134 - 1.9022 - 15.1916 - 39.5227	120 120
		Can	onical		
$1a_{1}$ $2a_{1}$ $1e$ $3a_{1}$ $\Sigma_{val}\varepsilon$ $\Sigma_{all}\varepsilon$	$\begin{array}{r} -11.2286\\ -0.9488\\ -0.5081\\ -0.4766\\ -4.4066\\ -26.8638\end{array}$	$\begin{array}{r} -11.2233\\ -0.9250\\ -0.5268\\ -0.4477\\ -4.4049\\ -26.8515\end{array}$	$\begin{array}{r} -11.2186 \\ -0.9062 \\ -0.5443 \\ -0.4134 \\ -4.4030 \\ -26.8402 \end{array}$	$\begin{array}{r} -11.2146 \\ -0.8912 \\ -0.5605 \\ -0.3699 \\ -4.3943 \\ -26.8235 \end{array}$	< 90 < 90

set to get the geometry reliably (rather than accidentally) correct at the SCF level. For BH_3 , CH_3^+ , CH_3 , OH_3^+ and NH_3^+ the basis set of the quality used here gives the presumably correct planar geometry as judged by other calculations and experimental evidence. But this basis set also gives planar geometry for NH_3 . With this difficulty in mind, the RHF and ICSCF results can be compared. For

	90	100	110	120	α _e
		IC	SCF		
$1a_1$ $2a_1$ $1e$ $3a_1$ $\Sigma_{val}\varepsilon$ E	- 17.1841 - 3.4483 - 2.8954 - 2.8857 - 21.3642 - 55.7320	- 17.1846 - 3.4339 - 2.9232 - 2.8574 - 21.4180 - 55.7871	-17.1832 - 3.4228 - 2.9480 - 2.8225 -21.4601 -55.8262	- 17.1801 - 3.4147 - 2.9706 - 2.7790 - 21.4908 - 55.8511	120 120
		Can	onical		
$1a_1 2a_1 1e 3a_1 \Sigma_{val} \varepsilon \Sigma_{all} \varepsilon$	- 16.0118 - 1.5793 - 1.0044 - 1.0248 - 8.2010 - 40.2246	- 16.0048 - 1.5559 - 1.0218 - 0.9935 - 8.1925 - 40.2021	$\begin{array}{r} -15.9971\\ -1.5361\\ -1.0375\\ -0.9581\\ -8.1803\\ -40.1745\end{array}$	- 15.9875 - 1.5189 - 1.0511 - 0.9158 - 8.1581 - 40.1331	< 90 < 90

Table 32. The $1a_1^2 2a_1^2 e^4 3a_1^2 A_1$ state of NH⁺₃

Table 33. The $1a_1^2 2a_1^2 e^4 3a_1^{21}A_1$ state of NH₃

	90	100	110	120	α _e
		IC	SCF		
$1a_1$	- 16.9616	-16.9608	-16.9582	-16.9542	
$2a_1$	- 3.2370	- 3.2174	- 3.1991	- 3.1804	
1e	- 2.6772	- 2.7036	- 2.7265	- 2.7462	
$3a_1$	- 2.4978	- 2.4819	- 2.4661	- 2.4526	
$\Sigma_{\rm val} \varepsilon$	-22.1784	-22.2110	-22.2364	-22.2508	120
Ε	- 56.1014	- 56.1346	- 56.1527	- 56.1589	120
		Can	onical		
$1a_1$	- 15.5449	15.5356	-15.5247	-15.5122	
$2a_1$	- 1.1917	- 1.1624	- 1.1340	- 1.1047	
1e	- 0.5929	- 0.6084	- 0.6212	- 0.6308	
$3a_1$	- 0.4444	- 0.4213	- 0.3991	- 0.3794	
$\Sigma_{\rm val} \varepsilon$	- 5.6438	- 5.6010	- 5.5510	- 5.4914	< 90
$\Sigma_{all} \varepsilon$	-36.7336	- 36.6722	-36.6004	- 36.5158	< 90

all these molecules the ICSCF valence orbital energy sum predicted a planar geometry in agreement with $E_{\rm SCF}$. But the slope of e_{1s} is large enough to make this sum continue to predict a planar geometry even for better basis sets for NH₃. The sum of the RHF valence energies is still worse, however, since it would predict that CH₃, NH₃⁺, NH₃, and OH₃⁺ were all bent to a HAH angle of less

	90	100	110	120	α _e
		IC	SCF		
$1a_1 2a_1 1e 3a_1 \Sigma_{val} \varepsilon E$	- 22.7984 - 4.4104 - 3.6841 - 3.5233 - 30.6038 - 76.2004	- 22.7965 - 4.3933 - 3.7126 - 3.5057 - 30.6484 - 76.2411	- 22.7922 - 4.3773 - 3.7375 - 3.4887 - 30.6820 - 76.2663	- 22.7860 - 4.3615 - 3.7593 - 3.4735 - 30.7072 - 76.2793	120 120
		Cano	onical		
$1a_1 2a_1 1e 3a_1 \Sigma_{val} \varepsilon \Sigma_{all} \varepsilon$	- 21.0404 - 1.8963 - 1.1422 - 1.0246 - 10.4106 - 52.4915	- 21.0254 - 1.8657 - 1.1537 - 0.9986 - 10.3434 - 52.3942	-21.0084 - 1.8356 - 1.1628 - 0.9738 -10.2700 -52.2868	- 20.9894 - 1.8049 - 1.1692 - 0.9511 -10.1888 - 52.1676	< 90 < 90

Table 34. The $1a_1^2 2a_1^2 e^4 3a_1^2 {}^1A_1$ state of H_3O^+

Fig. 27. Orbital energies for the $1a_1^2 2a_1^2 1e^{4} A_1$ state of BH₃

than 90° . The orbital energy versus bond angle diagrams (Fig. 27–29) for all these molecules for both the canonical and ICSCF results are similar to those predicted by Walsh and previously reported [7].

Fig. 28. Orbital energies for the $1a_1^2 2a_1^2 1e^4 3a_1^2 A_1$ state of CH₃

Fig. 29. Orbital energies for the $1a_1^2 2a_1^2 1e^4 3a_1^{2-1}A_1$ state of NH₃

Acknowledgement. The authors wish to acknowledge the financial support of the National Science Foundation.

References

- 1. Mulliken, R. S.: Rev. Mod. Phys. 14, 204 (1942)
- 2. Walsh, A. D.: J. Chem. Soc. (London) 2260, 1953
- 3. Peyerimhoff, S. D., Buenker, R. J.: To be published. The authors wish to thank Dr. Peyerimhoff for providing us with an advance copy of this manuscript
- 4. Allen, L. C.: Theoret. Chim. Acta (Berl.) 24, 117 (1972)
- 5. Coulson, C.A., Neilson, A.H.: Discussions Faraday Soc. 35, 71 (1963)
- 6. Buenker, R. J., Peyerimhoff, S. D.: J. Chem. Phys. 45, 3682 (1966)
- 7. Peyerimhoff, S. D., Buenker, R. J., Allen, L. C.: J. Chem. Phys. 45, 734 (1966)
- 8. Moskowitz, J. W., Harrison, M. C.: J. Chem. Phys. 43, 3550 (1965)
- 9. Davidson, E.R.: J. Chem. Phys. 57, 1999 (1972)
- 10. Whitten, J. L.: J. Chem. Phys. 44, 359 (1966)
- 11. Krauss, M.: J. Res. Nat. Bur. Std. 68 A, 635 (1964)

Prof. Dr. E. R. Davidson, —hemistry Department BG-10 University of Washington, Seattle, Washington 98195, USA